wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:-
(3sinx2)cosx5cos2x4sinx

Open in App
Solution

(3sinx2)cosx5cos2x4sinx=(3sinx2)cosx4+1cos2x4sinx=(3sinx2)cosx4+sin2x4sinx=(3sinx2)cosx(sinx2)2

Now, Let t=sinxdt=cosx
So,
(3sinx2)cosx(sinx2)2=3t2(t2)2dt

Using partial fraction we can write
3t2(t2)2=A(t2)2+Bt23t2=A+B(t2)A=4,B=3

Hence, 3t2(t2)2dt=4(t2)2+3t2=4(t2)1+3log(t2)+c=4(sinx2)1+3log(sinx2)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon