The correct option is B 2π[√x−x2−(1−2x)sin−1√x]−x+c
Let I=∫sin−1√x−cos−1√xsin−1√x+cos−1√xdx
We know that
sin−1√x+cos−1√x=π/2 ...(1)
Also, cos−1√x=π/2−sin−1√x ...(2)
Using equations (1) and (2), we get
I=sin−1√x−(π/2−sin−1√x)π/2dx
=2π∫(2sin−1√x−π/2)dx
=4π∫(sin−1√x)−∫1dx
Let x=sin2θ⇒dx=2sinθcosθ dθ
I=4π∫sin−1(sinθ)2sinθcosθ dθ−x+c
=4π∫θsin2θ dθ−x+c
=4π[−θcos2θ2+∫1×cos2θ2 dθ]−x+c
[Integrating by parts]
=4π[−θcos2θ2+sin2θ4]−x+c
=2π[√x−x2−(1−2x)sin−1√x]−x+c