Consider, I=∫sinxsin3x+cos3xdx
Dividing the numerator and denominator by cos3x
I=∫sinxcos3xtan3x+1dx
Put t=tanx⇒dt=sec2xdx
⇒dx=dtsec2x
Substituting the value of dx above we get
I=∫tsec2xt3+1dtsec2x
=∫t.dtt3+1
Using a3+b3=(a+b)(a2−ab+b2)
=∫t.dt(t+1)(t2−t+1)
Let tt2−t+1=At+1+Bt+Ct2−t+1
⇒tt2−t+1=A(t2−t+1)+(t+1)(Bt+C)(t2−t+1)(t+1)
Simplifying we get :
t=t2(A+B)+t(A+B+C)+A+C
Comparing coefficients we get :
A+B=0,A+B+C=1,A+C=0
Solving the three equations simultaneously, we get
A=−13,B=C=13
Putting the values of A,B and C our integral becomes,
13∫t+1(t2−t+1)dt−13∫dtt+1
=∫16(2t−1t2−t+1+3t2−t+1)−logt+13
=12∫dtt2−t+1+logt2−t+16−logt+13
=12∫dtt2−2×t×12+14−14+1+logt2−t+16−logt+13
=12∫dt(t−12)2+(√32)2+logt2−t+16−logt+13
=tan−1(2t−1√3)√3+logt2−t+16−logt+13+c
=tan−1(2tanx−1√3)√3+logtan2x−tanx+16−logtanx+13+c where t=tanx