wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
sinx dxsin3x+cos3x

Open in App
Solution

Consider, I=sinxsin3x+cos3xdx

Dividing the numerator and denominator by cos3x

I=sinxcos3xtan3x+1dx

Put t=tanxdt=sec2xdx

dx=dtsec2x

Substituting the value of dx above we get

I=tsec2xt3+1dtsec2x

=t.dtt3+1

Using a3+b3=(a+b)(a2ab+b2)

=t.dt(t+1)(t2t+1)

Let tt2t+1=At+1+Bt+Ct2t+1

tt2t+1=A(t2t+1)+(t+1)(Bt+C)(t2t+1)(t+1)

Simplifying we get :
t=t2(A+B)+t(A+B+C)+A+C

Comparing coefficients we get :
A+B=0,A+B+C=1,A+C=0

Solving the three equations simultaneously, we get
A=13,B=C=13

Putting the values of A,B and C our integral becomes,
13t+1(t2t+1)dt13dtt+1

=16(2t1t2t+1+3t2t+1)logt+13

=12dtt2t+1+logt2t+16logt+13

=12dtt22×t×12+1414+1+logt2t+16logt+13

=12dt(t12)2+(32)2+logt2t+16logt+13

=tan1(2t13)3+logt2t+16logt+13+c

=tan1(2tanx13)3+logtan2xtanx+16logtanx+13+c where t=tanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon