∫sinxsin4xdx =∫sinx2.(2sinxcosx)cos2xdx
=14∫cosxcos2xcos2xdx
=14∫cosxdx(1−sin2x)(1−2sin2x)
Substitute =sinx=t⇒cosxdx=dt
So, ∫sinxsin4xdx=14∫dt(1−t2)(1−2t2)
Let t2=y,1(1−y)(1−2y)=A1−y+B1−2y
⇒1=A(1−2y)+B(1−y)
Put y=1⇒1=A(−1)+0⇒A=−1
y=12⇒1=B×12⇒B=2
So, 1(1−t2)(1−2t2)=−11−t2+21−2t2
⇒∫sinxsin4xdx=14∫[−11−t2+21−2t2]dt
=−14∫dt1−t2+12∫11−(√2t)2dt
=−14.12.1log|1+t1−t+12.12×√2log|1+√2t1−√2t|+c
(∵∫1a2−x2dx=12alog|a+xa−x|+c)
=18log|1−sinx1+sinx|+14√2log|1+√2sinx1−√2sinx|+c