wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: sinxsin4xdx.

Open in App
Solution

sinxsin4xdx =sinx2.(2sinxcosx)cos2xdx
=14cosxcos2xcos2xdx
=14cosxdx(1sin2x)(12sin2x)
Substitute =sinx=tcosxdx=dt
So, sinxsin4xdx=14dt(1t2)(12t2)
Let t2=y,1(1y)(12y)=A1y+B12y
1=A(12y)+B(1y)
Put y=11=A(1)+0A=1
y=121=B×12B=2
So, 1(1t2)(12t2)=11t2+212t2
sinxsin4xdx=14[11t2+212t2]dt
=14dt1t2+1211(2t)2dt
=14.12.1log|1+t1t+12.12×2log|1+2t12t|+c
(1a2x2dx=12alog|a+xax|+c)
=18log|1sinx1+sinx|+142log|1+2sinx12sinx|+c

1149111_1109979_ans_aa2a4b3df3b24899a0c642dd83912220.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon