We have,
∫√a2−x2x2dx
Let put x=asinθ−−−(1)
then dx=acosθdθ
=∫√a2−a2sin2θa2sin2θ acosθdθ
=∫a√1sin2θa2sin2θ acosθdθ
=∫a2cos2θa2sin2θdθ
=∫cot2θdθ
=∫(csc2θ−1)dθ
=∫csc2θ−∫1dθ
=−cotθ−θ+c
by equation (1)
x=asinθ
xa sinθ
θ=sin−1xa
now,
−cotθ−θ+c
−cotsin−1xa−sin−1xa+c
Hence this is the answer