Evaluate : ∫√cos2xcosxdx
I=∫cosx√1−2(sinx)21−(sinx)2dx
substitute √2sinx=√2sinucosxdx=cosudu,sinx=sinu√2
=∫(cosudu√2)⋅√1−2(sinu)21−(sinu√2)2
=∫√2(cosu)22−(sinu)2du
=√2∫(cosu)21+(cosu)2du
substitute z=tanu,du=dzz2+1,(cosu)2=1z2+1
=√2∫1z2+11+1z2+1dzz2+1
=u√2−tan−1(tanu√2)
=√2sin−1(√2sinx)−tan−1(sinx√cos2x)+C