wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : cos2xcosxdx

A
2sin1(2sinx)tan1(sinxcos2x)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2sin1(2cosx)+tan1(sinxcos2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2sin1(2sinx)cot1(sinxsin2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 2sin1(2sinx)tan1(sinxcos2x)+C
Consider, I=cos2xcosxdx

I=cosxcos2x(cosx)2dx


I=cosx12(sinx)21(sinx)2dx

substitute 2sinx=2sinucosxdx=cosudu,sinx=sinu2

=(cosudu2)12(sinu)21(sinu2)2

=2(cosu)22(sinu)2du

=2(cosu)21+(cosu)2du

substitute z=tanu,du=dzz2+1,(cosu)2=1z2+1

=21z2+11+1z2+1dzz2+1

=u2tan1(tanu2)

=2sin1(2sinx)tan1(sinxcos2x)+C



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon