I=∫√cos2xsinx=cos2xsinx√cos2xdx
=∫1−2sin2xsinx√cos2xdx
=∫dxsinx√cox2x−2∫sin2xsinx√cos2xdx
=∫dxsinx√cos2x−sin2x−2∫sinxcos2xdx
=∫1sin2x1√cos2x−1dx−2∫sinxdx√cos2x
I1 I2
I1=∫cos2x√6t2x−1dx
let t= 6+x
dt=−cos2xdx
=−∫dt√t2−1=−ln(1+√t2−1)+c1
I1=−ln(1+√cot2x−1)+c1...(1)
I2=2∫sinxdxcos2x=2∫sinx2cos2x−1dx
cosx=u⇒sinxdx=−du
⇒I2=−2∫du2u2−1=√2∫duu2−12=−√2ln(4+√u2−12)+c2
=−√2ln(cosx+√cos2x−12)+c2...(2)
I=I1−I2
I=ln(1+√cot2x−1)+√2ln(cosx+√cos2x−12)+c