wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate cos 2xsin xdx

Open in App
Solution

I=cos2xsinx=cos2xsinxcos2xdx
=12sin2xsinxcos2xdx
=dxsinxcox2x2sin2xsinxcos2xdx
=dxsinxcos2xsin2x2sinxcos2xdx
=1sin2x1cos2x1dx2sinxdxcos2x
I1 I2
I1=cos2x6t2x1dx
let t= 6+x
dt=cos2xdx
=dtt21=ln(1+t21)+c1
I1=ln(1+cot2x1)+c1...(1)
I2=2sinxdxcos2x=2sinx2cos2x1dx
cosx=usinxdx=du
I2=2du2u21=2duu212=2ln(4+u212)+c2
=2ln(cosx+cos2x12)+c2...(2)
I=I1I2
I=ln(1+cot2x1)+2ln(cosx+cos2x12)+c

1169927_1035719_ans_7dec29854807495aa4b8cba82a833617.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon