Let, I =∫x1+√xdx
Put x=t2⇒dx=2tdt
I=∫t21+t2tdt
=2∫t31+tdt
=2∫t3+1−11+tdt
=2∫t3+11+tdt−2∫11+tdt
=2∫(t+1)(t2−t+1)1+tdt−2∫11+tdt
=2[t33−t22+t]−2log|1+t|+c
=2t33−2t22+2t−2log|1+t|+c
=2t33−t2+2t−2log|1+t|+c
=2(√x)33−(√x)2+2√x−2log∣∣1+√x∣∣+c, where t=√x
=2x√x3−x+2√x−2log∣∣1+√x∣∣+c