We have,
∫x−1x2−4x+5dx
Then,
∫x−1x2−4x−5dx
⇒∫(x−1)x2−(5−1)x−5dx
⇒∫(x−1)x2−5x+1x−5dx
⇒∫(x−1)(x−5)(x+1)dx
⇒∫x−1+1−1(x−5)(x+1)dx
⇒∫x+1−2(x−5)(x+1)dx
⇒∫(x+1)(x−5)(x+1)dx+∫−2(x−5)(x+1)dx
⇒∫1(x−5)dx+∫−2(x−5)(x+1)dx
⇒∫1(x−5)dx−2∫1x2−4x−5+4−4dx
⇒∫1(x−5)dx−2∫1x2−4x+4−9dx
⇒∫1(x−5)dx−2∫1(x−2)2−32dx
On integrating and we
get,
log(x−5)−2×12×3log(x−2−3x−2+3)+C
⇒log(x−5)−13log(x−5x+1)+C
Hence, this is the
answer.