I=∫x1+x3dx
Using partial fraction :- x1+x3=x+13(x2−x+1)−13(x+1)
∴I=∫x1+x3dx=∫x+13(x2−x+1)−13(x+1)dx
Now ∫x+13(x2−x+1)dx=13∫x+1x2−x+1dx
=13∫x+1(x−12)2+34dx
Now let u=x−12
∴I=13∫2(2u+3)4u2+3du
=23[∫2u4u2+3du+∫34u2+3du]
=23[14log∣∣4u2+3∣∣+√32tan−1(2√3u)]
=23[14log∣∣∣4(x−12)2+3∣∣∣+√32tan−1(2√3(x−12))]
Now ∫13(x+1)dx=13log|x+1|
∴I=16(log∣∣4x2−4x+4∣∣+2√3tan−1(2x−1√3))−(13log|x+1|)+c