wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x1+x3dx

Open in App
Solution

I=x1+x3dx

Using partial fraction :- x1+x3=x+13(x2x+1)13(x+1)

I=x1+x3dx=x+13(x2x+1)13(x+1)dx

Now x+13(x2x+1)dx=13x+1x2x+1dx

=13x+1(x12)2+34dx

Now let u=x12

I=132(2u+3)4u2+3du

=23[2u4u2+3du+34u2+3du]

=23[14log4u2+3+32tan1(23u)]

=23[14log4(x12)2+3+32tan1(23(x12))]

Now 13(x+1)dx=13log|x+1|

I=16(log4x24x+4+23tan1(2x13))(13log|x+1|)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon