∫x21+x4 dx
Let, x2=tanθ.......(1)
∴2xdx=sec2θ
Using these in the above integration we have
12 ∫√tanθsec2θsec2θ dθ
=12∫ √tanθ dθ......(2)
Now,
∫ √tanθ dθ
=12 ∫ ({√tanθ−√cotθ}+{√tanθ+√cotθ}) dθ
=12 ∫ ({sinθ−cosθ√sinθcosθ}+{sinθ+cosθ√sinθcosθ})dθ
=12 ∫ ⎛⎜⎝⎧⎪⎨⎪⎩sinθ−cosθ1√2√2sinθcosθ⎫⎪⎬⎪⎭+⎧⎪⎨⎪⎩sinθ+cosθ1√2√2sinθcosθ⎫⎪⎬⎪⎭⎞⎟⎠dθ
=1√2 ∫ ({sinθ−cosθ√1+2sinθcosθ−1}+{sinθ+cosθ√1−(1−2sinθcosθ)})dθ
=1√2 ∫ ⎛⎜⎝⎧⎨⎩−d(sinθ+cosθ)√(sinθ+cosθ)2−1⎫⎬⎭+{d(sinθ−cosθ)√1−(sinθ−cosθ)}⎞⎟⎠
=1√2 [−{log|(sinθ+cosθ)+√(sinθ+cosθ)2−1|}+sin−1(sinθ−cosθ)] +c
=1√2 [−{log|(sinθ+cosθ)+√2sinθcosθ|}+sin−1(sinθ−cosθ)] +c
=1√2 [−{log|x2+1√1+x4+√2x21+x4|}+sin−1(x2−1√1+x4)] +c [Since sinθ=x2√1+x4 and cosθ=1√1+x4 (from 1)]
From (2) the required integral
=12√2 [−{log|x2+1√1+x4+√2x21+x4|}+sin−1(x2−1√1+x4)] +c