wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x21+x4dx

Open in App
Solution

x21+x4 dx
Let, x2=tanθ.......(1)
2xdx=sec2θ
Using these in the above integration we have
12 tanθsec2θsec2θ dθ
=12 tanθ dθ......(2)
Now,
tanθ dθ
=12 ({tanθcotθ}+{tanθ+cotθ}) dθ
=12 ({sinθcosθsinθcosθ}+{sinθ+cosθsinθcosθ})dθ
=12 sinθcosθ122sinθcosθ+sinθ+cosθ122sinθcosθdθ
=12 ({sinθcosθ1+2sinθcosθ1}+{sinθ+cosθ1(12sinθcosθ)})dθ
=12 d(sinθ+cosθ)(sinθ+cosθ)21+{d(sinθcosθ)1(sinθcosθ)}
=12 [{log|(sinθ+cosθ)+(sinθ+cosθ)21|}+sin1(sinθcosθ)] +c
=12 [{log|(sinθ+cosθ)+2sinθcosθ|}+sin1(sinθcosθ)] +c
=12 [{log|x2+11+x4+2x21+x4|}+sin1(x211+x4)] +c [Since sinθ=x21+x4 and cosθ=11+x4 (from 1)]
From (2) the required integral
=122 [{log|x2+11+x4+2x21+x4|}+sin1(x211+x4)] +c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon