∫x2ex(x+2)2
=∫x2ex1(x+2)2dx [ Using integration by partly ]
=x2ex∫1(x+2)2dx−∫(ddxx2ex)∫1(x+2)2dx
=x2ex[(x+2)−2+1−2+1]−∫[2xex+x2ex](x+2)−2+1(−2+1)dx
=x2ex(−1)(x+2)+∫2xex(x+2)dx−∫x2ex(x+1)dx
=x2ex(−1)(x+2)+∫xex[2(x+2)+x(x+2)]dx
=−x2ex(x+2)+∫xex2+x(x+2)dx
=−x2ex(x+2)+∫xexdx
=−x2ex(x+2)+x∫exdx−∫(ddxx.∫exdx)dx
=−x2ex(x+2)+xex−∫exdx+c
=−x2ex(x+2)+xex−ex+c
Hence, the answer is −x2ex(x+2)+xex−ex+c.