We have,
∫x2x4+x2+1dx=12∫(x2+1)+(x2−1)x4+x2+1dx=12∫1+x2x4+x2+1dx+12∫x2−1x4+x2+1dx=12∫(1+1x2)dx(x−1x)2+3+12∫(1−1x2)dx(x+1x)2−1=12∫dtt2+3+12∫dtv2−1t=x−1xv=x+1x=121√3tan−1(t√3)+12.12ln∣∣∣v−1v+1∣∣∣+C=12√3tan−1(x−1x√3)+14ln∣∣
∣
∣∣x+1x−1x+1x+1∣∣
∣
∣∣+C
Hence, this is the answer.