I=∫x2x4+x2−2dx
I=∫x2x4+2x2−x2−2dx
I=∫x2x2(x2+2)−1(x2+2)dx
I=∫x2(x2+2)(x2−1)dx
x2(x2+2)(x2−1)=Ax2+2+Bx2−1
⇒x2=A(x2−1)+B(x2+2)
Put x=1
1=0+3B⟹B=13
Put x=0⇒0=−A+2B⇒A=2B⇛A=23
Therefore, I=23∫1x2+2dx+13∫dxx2−1
∫1x2+a2dx=1atan−1xa
∫1x2−a2dx=12aln[x−ax+a]
Thus I=23×1√2tan−1x√2+13×12ln∣∣∣x−1x+1∣∣∣+C
I=√23tan−1x√2+16ln∣∣∣x−1x+1∣∣∣+C