wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x2x4+x22dx.

Open in App
Solution

I=x2x4+x22dx
I=x2x4+2x2x22dx
I=x2x2(x2+2)1(x2+2)dx
I=x2(x2+2)(x21)dx
x2(x2+2)(x21)=Ax2+2+Bx21
x2=A(x21)+B(x2+2)
Put x=1
1=0+3BB=13
Put x=00=A+2BA=2BA=23
Therefore, I=231x2+2dx+13dxx21
1x2+a2dx=1atan1xa
1x2a2dx=12aln[xax+a]
Thus I=23×12tan1x2+13×12lnx1x+1+C
I=23tan1x2+16lnx1x+1+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon