∫x3−4x2+6x+5x2−2x+3dx=∫(x−2−x−5x2−2x+3)dx
=∫xdx−∫2dx–12∫2x−10x2−2x+3dx
=x22−2x−12∫2x−2x2−2x+3+4∫dxx2−2x+3
=x22−2x−12log(x2−2x+3)+4∫dxx2−2x+3
=x22−2x−12log(x2−2x+3)+4∫dx(x−1)2+(√22)
=x22−2x−12log(x2−2x+3)+4∫dx(x−1)2+(√22)
=x22−2x−12log(x2−2x+3)+4√2tan−1(x−1√2)+C.