Let I=∫x3√1+x2dx.
I=∫x2⋅x√1+x2dx
Put 1+x2=u, then,
x2=u−1
2xdx=du
I=12∫u−1√udu
=12∫u√udu−12∫1√udu
=12∫√udu−12∫1√udu
=12(23u3/2)−12(2u1/2)+c
=13u3/2−u1/2+c
=u1/2(13u−1)+c
=√1+x2(1+x23−1)+c
=√1+x2(1+x2−33)+c
=√1+x2(x2−23)+c
=√1+x23(x2−2)+c