wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: (x4)ex(x2)3dx.

Open in App
Solution

Given the integral
(x4)ex(x2)3dx=(x22)e(x2)e2(x2)3dx=e2(x22)e(x2)(x2)3dx
Let us assume,
u=x2dudx=1du=dx
Substituting these values in the integral we get,
e2(x22)e(x2)(x2)3dx=e2(u2)euu3du
For (u2)euu3du,
(u2)euu3du=ueuu3du2euu3du=euu2du2euu3du
Using integration by parts for euu3du
=2eu2u2+2eu2u2du+euu2du=euu2euu2du+euu2du=euu2
So,
e2(u2)euu3du=e2euu2=eu+2u2[u=x2]=ex(x2)2(x4)ex(x2)3dx=ex(x2)2+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon