I=∫xdx(x−1)(x2+1)dx
Let x(x−1)(x2+1)=A(x−1)+Bx+C(x2+1)
x=Ax2+A+Bx2+Cx−Bx−C
On solving, we get
A=12,B=−12,C=12
I=∫12(x−1)dx+∫−12x+12(x2+1)dx
I1=12log|x−1|+c1
I2=12∫−xx2+1dx+12∫1x2+1dx
=−14∫2xx2+1dx+12∫1x2+1dx
=−14log|x2+1|+12tan−1|x|+c2
I=I1+I2
=12log|x−1|−14log|x2+1|+12tan−1|x|+c
Where, c=(c1+c2) is constant of Integration.