Evaluate ∫x√x2+2dx
Consider the given integral.
I=∫x√x2+2dx
Let t=x2+2
dtdx=2x+0
dt2=xdx
Therefore,
I=12∫dt√t
I=12(2√t)+C
I=√t+C
On putting the value of t, we get
I=√x2+2+C
Hence, this is the answer.
Let x1,x2,x3,x4 be four non-zero numbers satisfying the equation tan−1(ax)+tan−1(bx)+tan−1(cx)+tan−1(dx)=π2, then which of the following relation hold(s) good?