The correct option is
B −25sin−1(√1−x5)+cx√x√1−x5dx
put 1−x5=t2,x5=1−t2,x=(1−t2)1/5
−5x4dx=2tdt
dx=−2t5x4dt
dx=−25t(1−t2)4/5dt
⇒∫x√x√1−x5dx=−∫(1−t2)3/10t25t(1−t2)4/5dt
=−25∫(1−t2)3/10(1−t2)4/5dt
=−25∫(1−t2)4/5(1−t2)−12(1−t2)4/5dt
=−25∫1√1−t2dt=−25sin−1(t)+c
=−23sin−1(√1−x5)+c