wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate dxsecx+cosecx

A
12[sinxcosx12lntan(x2+π8)]+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12[sinx+cosx12lntan(x2+π8)]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12[sinxcosx+12lntan(x2+π8)]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 12[sinxcosx12lntan(x2+π8)]+c
I=dxsecx+cosecxdx
I=sinxcosxdxsinx+cosxdx ........ [secx=1cosx,cosecx=1sinx]

I=122sinxcosxsinx+cosxdx
I=121+2sinxcosx1sinx+cosxdx
I=12sin2x+cos2x+2sinxcosx1sinx+cosxdx

I=12(sinx+cosx)21sinx+cosxdx
I=12[(sinx+cosx)dx1sinx+cosxdx]

I=12⎢ ⎢(sinx+cosx)dx12(12sinx+12cosx)dx⎥ ⎥
I=12[cosx+sinx]1221sin(x+π4)dx
I=12[cosx+sinx]122cosec(x+π4)dx
I=12[sinxcosx]122ln[tan(x2+π8)]+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon