I=∫x−1√x2−xdxWrite (x−1)=12(2x−1)+(−12)
I=∫(2x−12√x2−x−12√x2−x)dx
2I=∫2x−1√x2−xdx−∫12√x2−xdx→I=I1+I2
Substitute u=x2−x→dx=12x−1du in I1,
I1=∫1√udu=2√u
Undo substitution u=x2−x
I1=2√x2−x
Now, substitute u=2x−1→dx=12du in I2
I2=∫1√u2−1du=ln(√u2−1−u)
I2=ln(√(2x−1)2−1+2x−1)
∴I=√x2−x−ln(|√(2x−1)2−1+2x−1)|)2+C