wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x1x2xdx.

Open in App
Solution

I=x1x2xdx
Write (x1)=12(2x1)+(12)
I=(2x12x2x12x2x)dx
2I=2x1x2xdx12x2xdxI=I1+I2
Substitute u=x2xdx=12x1du in I1,
I1=1udu=2u
Undo substitution u=x2x
I1=2x2x
Now, substitute u=2x1dx=12du in I2
I2=1u21du=ln(u21u)
I2=ln((2x1)21+2x1)
I=x2xln(|(2x1)21+2x1)|)2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon