The correct option is
C
esinx(2sinx−2)+c
∫esinx⋅2sinxcosxdx
=2∫esinx⋅sinxd(sinx)
Take sinx=t
=2∫et⋅tdt
We know, ∫u.v dx=u∫v dx −∫(dudx∫v dx)dx
Now by integrating the functions by parts, by taking t as u and et as v, we get
=2(tet−et)
=2 e t(t−1)
Put the value of t
=2esinx(sinx−1)=esinx(2sinx−2)
⇒∫e sinxsin 2x dx=esinx(2sinx−2)+c