Geometric Interpretation of Def.Int as Limit of Sum
Evaluate ∫ ...
Question
Evaluate ∫e−xsinxdx=
A
e−x2[sinx+cosx]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−e−x2[sinx+cosx]+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−e−x(sinx+cosx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e−x(sinx+cosx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−e−x2[sinx+cosx]+c Using the identity, ∫eaxsin(bx+c)=eaxa2+b2×[asin(bx+c)−bcos(bx+c)]+c Substituting the values, with a=−1 and b=1 ∫e−xsin(x)dx=e−x(−1)2+12×[−sin(x)−1(cosx)]+c =−e−x2[sinx+cosx]+c Hence, option 'B' is correct.