wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 11tan2xdx

A
x214log|tan(π4+x)|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x2+14log|tan(π4+x)|+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x2+14log|tan(π4+x2)|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x214log|tan(π4+x2)|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B x2+14log|tan(π4+x)|+c
Substitute tan(x)= t,
sec2xdx=dt
sec2x=1+tan2x=1+t2
I=11tan2xdx=11t2dt1+t2
Now we need to split the denominator by Using Partial Fractions;
1(1t2)(1+t2)=12(1t2)+(1+t2)(1t2)(1+t2)=12[11+t2+11t2]11t2=12[11+t+11t]
So we have,
1(1t2)(1+t2)=12[11+t2+12[11+t+11t]]1(1t2)(1+t2)dt=1211+t2+1411+t+1411tdtI=1211+t2dt+1411+tdt+1411tdt
I=12tan1t+14log(1+t)14log(1t)+C
put t=tan(x)
I=x2+14log[1+tan(x)1tan(x)]+C
ALso,
tan(π4+x)=1+tan(x)1tan(x)
I=x2+14log[tan(π4+x)]+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon