The correct option is C 12√2tan−1(x2−1√2x)−14√2log|x2−√2x+1x2+√2x+1|+c
∫11+x4dx=
=12∫1+x2−x2+11+x4dx
=12∫1+x21+x4dx−12∫x2−11+x4dx
=12∫1+1x2x2+1x2dx−12∫1−1x2x2+1x2dx (dividingNrandDrbyx2)
=12∫(1+1x2)(x−1x)2+(√2)2dx−12∫(1−1x2)(x+1x)2−(√2)2dx
Put t=x−1x and u=x+1x
⇒dt=(1+1x2)dx and du=(1−1x2)dx
=12∫dtt2+(√2)2−12∫duu2−(√2)2
=12√2tan−1(t√2)−14√2log|u−√2u+√2|+c
=12√2tan−1(x2−1√2x)−14√2log|x2−√2x+1x2+√2x+1|+c