1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Partial Fractions
Evaluate ∫1...
Question
Evaluate
∫
(
1
−
cos
x
)
d
x
cos
x
(
1
+
cos
x
)
A
log
(
sec
x
+
tan
x
)
−
2
tan
x
2
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
log
(
sec
x
+
tan
x
)
+
2
tan
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log
(
sec
x
−
tan
x
)
−
2
tan
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
log
(
sec
x
−
tan
x
)
+
2
tan
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
log
(
sec
x
+
tan
x
)
−
2
tan
x
2
+
c
Given,
∫
(
1
−
cos
x
)
d
x
cos
x
(
1
+
cos
x
)
⇒
∫
(
1
+
cos
x
)
cos
x
(
1
+
cos
x
)
−
2
cos
x
cos
x
(
1
+
cos
x
)
d
x
⇒
∫
sec
x
−
2
1
+
cos
x
d
x
⇒
∫
sec
x
−
2
2
cos
2
x
2
d
x
since
[
cos
x
=
2
cos
2
x
2
−
1
]
⇒
∫
sec
x
−
sec
2
x
2
d
x
⇒
log
(
sec
x
+
tan
x
)
−
2
tan
x
2
+
c
is our answer.
Suggest Corrections
0
Similar questions
Q.
Is tan x+ tan x=2tanx?
Q.
∫
1
1
−
cos
4
x
d
x
=
−
1
2
tan
x
+
k
√
2
tan
−
1
(
tan
x
√
2
)
+
C
, where
k
=
Q.
∫
e
tan
x
1
cos
4
x
d
x
is equal to
Q.
The differential coefficient of (log x)
tanx
is: