The correct option is A −2[log(1+√1−x√x)−cos−1√x]+c
I=∫(1−√x1+√x)1/2⋅dxx
Substituting √x=cosθ
12√xdx=−sinθ
⇒dx=−2sinθcosθdθ
So, I=−2∫(tan2θ2)1/2tanθdθ
I=−2∫tanθ2tanθdθ
I=−4∫sin2(θ2)cosθdθ
=−2∫1−cosθcosθdθ
=−2∫(secθ−1)dθ
I=−2log|secθ+tanθ|+2θ+C
I=−2log|1+sinθcosθ|+2θ+C
I=−2log|1+√1−x√x|+2cos−1√x+C