The correct option is A π[12log√2+1√2−1+tan−11√2−2110√2]
In Nr put x=sinθ, then sin−1(1−2sin2θ)+cos−1(2sinθcosθ)=sin−1(cos2θ)+cos−1(sin2θ) =π2−cos−1(cos2θ)+π2−sin−1(sin2θ) =π−2θ−2θ=π−4sin−1x
∴I=∫1√2−1√2x81−x4[π−4sin−∣x]dx =2∫1√20πx81−x4dx+0 by Prop.V =2π∫1√20x8−1+11−x4dx =2π∫1√20[−(x4+1)+1(1−x2)(1+x2)]dx =2π∫1√20−(x4+1)+12{11−x2+11+x2}dx =2x[−(x55+x)+14log1+x1−x+12tan−1x]1/√20 =π[12log√2+1√2−1+tan−11√2−2110√2]
Ans: A