1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 1
Evaluate ∫1...
Question
Evaluate
∫
1
(
x
+
1
)
√
x
+
2
d
x
A
log
|
√
x
+
2
+
1
√
x
+
2
−
1
|
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log
|
√
x
+
2
−
1
√
x
+
2
+
1
|
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
5
log
|
√
x
+
2
−
1
√
x
+
2
+
1
|
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
5
log
|
√
x
+
2
+
1
√
x
+
2
−
1
|
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
log
|
√
x
+
2
−
1
√
x
+
2
+
1
|
+
c
Let
I
=
∫
1
(
x
+
1
)
√
x
+
2
d
x
=
∫
1
(
x
+
2
−
1
)
√
x
+
2
d
x
√
x
+
2
=
t
=
1
2
√
x
+
2
d
x
=
d
t
and
x
+
2
=
t
2
∴
I
=
∫
2
d
t
(
t
2
−
1
)
=
2
∫
d
t
t
2
−
1
=
2
2
l
o
g
∣
t
−
1
t
+
1
∣
+
c
Now, after putting the value of
t
, we get
∫
1
(
x
+
1
)
√
x
+
2
d
x
=
l
o
g
∣
√
x
+
2
−
1
√
x
+
2
+
1
∣
+
c
Suggest Corrections
0
Similar questions
Q.
Evaluate
∫
x
dx
(
x
−
1
)
(
x
2
+
4
)