The correct option is B 1√2[tan−1(x2−1√2x)−12lnx2−√2x+1x2+√2x+1]
I=∫1x4+1dx=∫⎛⎜⎝√2x−24(−x2+√2x−1)+√2x+24(x2+√2x+1)⎞⎟⎠dx=14∫√2x+2x2+√2x+1dx+14∫√2x−2−x2+√2x−1dx=14√2∫√2+2xx2+√2x+1dx+14∫1x2+√2x+1dx+14∫√2x−2−x2+√2x−1dx
Let I1=14√2∫√2+2xx2+√2x+1dx
Put t=x2+√2x+1⇒dt=(2x+√2)dx
I1=14√2∫1tdt=logt4√2=log(x2+√2x+1)4√2
And I2=14∫1x2+√2x+1dx
Put t=x+1√2⇒dt=dx
I2=14∫1t2+12dt=14∫22t2+1=tan−1(√2x+12√2)I3=14∫√2x−2−x2+√2x−1dx=14∫⎛⎜⎝√2x−2√2(−x2+√2x−1)−1−x2+√2x−1⎞⎟⎠dx=−log(−x2+√2x−1)4√2−tan(1−√2x)2√2I=I1+I2+I3=12√2[tan−1(x2−1√2x)−12lnx2−√2x+1x2+√2x+1]