The correct option is A I=12⎡⎢
⎢
⎢⎣1√7tan−1⎛⎜
⎜
⎜⎝x−1x√7⎞⎟
⎟
⎟⎠−1√3tan−1⎛⎜
⎜
⎜⎝x+1x√3⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦+C
Let I=12∫2x4+5x2+1dx
⟹I=12∫1+x2x4+5x2+1dx+12∫1−x2x4+5x2+1dx
I=12∫1+1x2x2+5+1x2dx−12∫1−1x2x2+5+1x2dx (dividing Nr and Dr by x2)
=12∫(1+1x2)(x−1x)2+7dx−12∫(1−1x2)(x+1x)2+3dx
Put t=x−1x and u=x+1x
⇒dt=dx and du=dx
=12∫dtt2+(√7)2−12∫duu2+(√3)2
∴I=12.1√7tan−1(t√7)−12.1√3tan−1(u√3)+C
=12⎡⎢
⎢
⎢⎣1√7tan−1(x−1x√7)−1√3tan−1(x+1x√3)⎤⎥
⎥
⎥⎦+C