The correct option is C I=(x+72)√x2+x+1+54log{(x+12)+√x2+x+1}+C
Let I=∫2x2+5x+4√x2+x+1dx
Put 2x2+5x+4=λ(x2+x+1)+μ{ddx(x2+x+1)}+γ
⇒2x2+5x+4=λ(x2+x+1)+μ(2x+1)+γ
Comparing the coefficients of like terms, we get
2=λ, 5=λ+2μ, 4=λ+μ+γ
∴λ=2, μ=32, γ=12
⇒2x2+5x+4=2(x2+x+1)+32(2x+1)+12
Hence, the above integral reduces to
I=∫2x2+5x+4√x2+x+1dx
=∫(2.(x2+x+1)√x2+x+1+32.(2x+1)√x2+x+1+12.1√x2+x+1)dx
=2∫√x2+x+1dx+32∫dt√t+12∫dx√x2+x+1(wheret=x2+x+1)
=2∫
⎷(x+12)2+(√32)2dx+3√t+12∫dx
⎷(x+12)2+(√32)2
=2[12(x+12)√x2+x+1+12.34.log∣∣∣(x+12)+√x2+x+1∣∣∣]+3√x2+x+1+12log∣∣∣(x+12)+√x2+x+1∣∣∣+C
∴I=(x+12)√x2+x+1+34log{(x+12)+√x2+x+1}+3√x2+x+1+12log{(x+12)+√x2+x+1}+C
I=(x+12)√x2+x+1+54log{(x+12)+√x2+x+1}+3√x2+x+1+C