Evaluate : ∫3+2cosx(2+3cosx)2dx
Let I=∫3+2cosx(2+3cosx)2dx.
Dividing Nr and Dr
by sin2x, we get
I=∫(3cosec2x+2cotxcosecx)(2cosecx+3cotx)2dx
Put 2cosecx+3cotx=t
⇒(−2cotxcosecx−3cosec2x)dx=dt
=−∫dtt2=−−1t+C
=12cosecx+3cotx+C=(sinx2+3cosx)+C