The correct option is
C 12√(5)tan−1√5x32.Let I=∫3x24+5x6dxLet u=x3
dudx=3x2
du=3x2dx
I=∫du4+5u2
Now, apply integral substitution,
u=2√5v
I=∫dv2√5(v2+1)dv
I=12√5∫1v2+1dv
I=12√5tan−1v
I=12√5tan−1(√52u) [ Re-substituting value of v ]
I=12√5tan−1(√52x3) [ Re-substituting value of u ]