The correct option is D −x+1x5+x+1+C
I=∫5x4+4x5(x5+x+1)2dx=∫5x4+1(x5+x+1)2dx+∫4x5−1(x5+x+1)2dx
Let I=I1+I2
I1=∫5x4+1(x5+x+1)2dx
Substitute x5+x+1=t⇒(5x4+1)dx=dt
I1=∫1t2dt=−1t+c=−1x5+x+1+c
I2=∫4x3−1x2(x4+1+1x)2dx
Substitute x4+1x+1=υ⇒(4x3−1x2)dx=dt
I2=∫1υ2dυ=−1υ+c=−1x4+1x+1+c=−xx5+x+1+c
∴I=I1+I2=−(x+1)x5+x+1+c