The correct option is
B 1√2log[√2+√1−tan2x√2−√1−tan2x]−log(cotx+√cot2x−1)+cI=∫√cos2xsinxdx=∫√cos2x−sin2xsinxdx=∫√cot2x−1dx
Put cotx=secθ⇒−cosec2xdx=secθtanθdθ
cosec2x=1+cot2x and put cot2x=sec2θ
to get dx, then
∴I=∫√sec2θ−1sin2θcosθ+cos3θdθ
=−∫secθtan2θ1+sec2θdθ=−∫sin2θcosθ+cos3θdθ
=∫(1+cos2θ)−2cos2θcosθ(1+cos2θ)dθ
=−∫secθdθ+2∫cosθ1+cos2θdθ
=−log|secθ+tanθ|+2∫cosθ2−sin2θdθ
=−log|secθ+tanθ|+2∫dt2−t2(putsinθ=t)
=−log|secθ+tanθ|+212√2log∣∣∣√2+sinθ√2−sinθ∣∣∣+C .
............. Using ∫1a2−x2dx=12alog|a+xa−x|+c
=−log|cotx+√cot2x−1|+1√2log∣∣∣√2+√1−tan2x√2−√1−tan2x∣∣∣+C