wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate (cos2x)1/2sinxdx.

A
13log[21tan2x21tan2x]log(cotx+cot2x1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12log[2+1tan2x21tan2x]log(cotx+cot2x1)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12log[2+1tan2x21tan2x]log(cotx+cot2x1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12log[2+1tan2x21tan2x]log(cotx+cot2x1)+c
I=cos2xsinxdx=cos2xsin2xsinxdx=cot2x1dx

Put cotx=secθcosec2xdx=secθtanθdθ

cosec2x=1+cot2x and put cot2x=sec2θ
to get dx, then

I=sec2θ1sin2θcosθ+cos3θdθ

=secθtan2θ1+sec2θdθ=sin2θcosθ+cos3θdθ

=(1+cos2θ)2cos2θcosθ(1+cos2θ)dθ

=secθdθ+2cosθ1+cos2θdθ

=log|secθ+tanθ|+2cosθ2sin2θdθ

=log|secθ+tanθ|+2dt2t2(putsinθ=t)

=log|secθ+tanθ|+2122log2+sinθ2sinθ+C .
............. Using 1a2x2dx=12alog|a+xax|+c

=log|cotx+cot2x1|+12log2+1tan2x21tan2x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon