wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : dxsin6x+cos6x

Open in App
Solution

Consider I=1sin6x+cos6x

I=1cos6xtan6x+1dx (dividing numerator and denominator by cos6x)

=sec6x1+tan6xdx

=sec4xsec2x1+tan6xdx=(1+tan2x)2sec2xdx1+tan6x

Let tanx=t sec2xdx=dt

I=(1+t2)21+t6dt

=(1+t2)2dt(1)3+(t2)3=(1+t2)2dt(1+t2)(1+t4t2) ........ (Applying a3+b3 formula)

=1+t21+t4t2dt

=t2(1+1t2)dtt2(t2+1t21)=(1+1t2)(t1t)2+1dt

Take t1t=u (1+1t2)dt=du

I=duu2+1

=tan1u=tan1(t1t)

=tan1(t21t)=tan1(tan2x1tanx)+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon