wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate dx(xα)(βx),β>α

Open in App
Solution

1(xα)(βx)dx
x=αcos2θ+βcos2θ
xα=αsin2θ+βcos2θα
=(βα)cos2θ
βx=βαsin2θβcos2θ
=(βα)sin2α
dx=[α.2sinθcosθ+β2cosθ(sinθ)]
=(αβ)sinθdθ
1(xα)(βx)dx=(αβ)sin2θdθ(βα)cos2θ(βα)sin2θ
=(αβ)sin2θdθ(βα)sinθcosθ
=2dθ=2θ+c
x=αsin2θ+βcos2θ
=α(1cos2θ)+βcos2θ
cos2θ=xαβxcosθ=xαβx
θ=π2sin1xαβx
=2.sin1xαβx+cπ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Surface Area of Solids
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon