The correct option is C ln∣∣∣√x+4+√x−1√x+4−√x−1∣∣∣+c
Let I=∫dx√x2+3x−4
I=∫dx√x2+32(2)x+94−4−94
I=∫dx√(x+32)2−(52)2
=ln∣∣
∣∣(x+32)+√(x+32)2−(52)2∣∣
∣∣+C1
=ln∣∣∣2x+32+√x2+3x−4∣∣∣+C1
=ln∣∣
∣∣(x−1)+(x+4)+2√(x−1)(x+4)2∣∣
∣∣+C1
=ln∣∣
∣∣5[√x−1+√x+4]22[(x+4)−(x−1)]∣∣
∣∣+C1
=ln(52)+ln∣∣
∣∣[√x−1+√x+4]2(√x+4−√x−1)(√x+4+√x−1)∣∣
∣∣+C1
=ln∣∣
∣∣√x+4+√x−1√x+4−√x−1∣∣
∣∣+C