⇒x−a=sin2θ(b−a)⇒sinθ=√x−ab−a⇒θ=sin−1√x−ab−a
dx=a(2cosθ)(−sinθ)+b(2sinθ)(cosθ)dθ
⇒dx=2(b−a)sinθcosθdθ
∴I=∫2(b−a)sinθcosθdθ√(acos2θ+bsin2θ−a)(b−acos2θ−bsin2θ)
=2(b−a)∫sinθcosθdθ√(acos2θ+bsin2θ−a)(b−acos2θ−bsin2θ)
=2(b−a)∫sinθcosθdθ√(bsin2θ−asin2θ)(bcos2θ−acos2θ)
=2(b−a)∫sinθcosθdθ(b−a)sinθcosθ
=2∫1dθ
=2θ+C=2sin−1√x−a(b−a)+C