wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : dx(x3+3x2+3x+1)x2+2x3

Open in App
Solution

1(x3+3x2+3x+1)x2+2x3dx
=1(x+1)3x2+2x3dx
let x2+2x3=t2
2tdt=2(x+1)dxtdt=(x+1)dx
1(x+1)4.t2.tdt
=tdtt(x2+1+2x)2
=dt(x2+2x3+4)2
=dt(t2+4)2
let t=2tanθdt=2sec2θdθ
=2sec2θdθ16(1+tan2θ)2
=18sec2θdθsec2θ(sec2θtan2θ=1)
=18cos2θdθ
=182cos2θ2dθ=116(1+cos2θ)dθ(cos2θ=2cos2θ1)
=116θ+sin2θ32
=116tan1(x2+2x32)+432[(x2+2x3)x2+2x2]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relative
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon