wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: dxxx2+x+1

A
lnx2x+1+x1x2+x+1+x+1+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
lnx2x+1+x1x2x+1+x+1+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
lnx2+x+1+x1x2+x+1+x+1+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B lnx2+x+1+x1x2+x+1+x+1+c
Given :-
(dxx(x2+x+1)
To evaluate the integral
Sol.:
x2x+1=±(x)+t(UsingEulersSubstitution)
x2+x+1=x2+2xt+t2
x=1t22t1
dx=2(t2t+1)2t1dt
x(x2+x+1)=x(x+t)=(1t2)(t2t+1)(2t1)2
I=(2(t2t+1)2t1(1t2)(t2t+1)(2t1)2dt
I=(2(2t1)(1t2)dt
I=2(((2t1)(t21)dt)
I=2(2t(t21)dt)(2(t21))dt
I=ln((t21))ln((t1t+1))+C
I=2ln(|(t+1)|)+2ln(|(t1)|)ln(|(t1)|)ln(|(t+1)|)+C
Hence the correct is
lnx2+x+1+x1x2+x+1+x+1+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon