∫(dxx(√x2+x+1)To evaluate the integral
Sol.:
√x2x+1=±(x)+t(UsingEuler′sSubstitution)
x2+x+1=x2+2xt+t2
x=1−t22t−1
dx=−2(t2−t+1)2t−1dt
x(√x2+x+1)=x(x+t)=(1−t2)(t2−t+1)(2t−1)2
I=∫(−2(t2−t+1)2t−1(1−t2)(t2−t+1)(2t−1)2dt
I=∫(−2(2t−1)(1−t2)dt
I=2(∫((2t−1)(t2−1)dt)
I=2(∫2t(t2−1)dt)−∫(2(t2−1))dt
I=ln(∣∣(t2−1)∣∣)−ln(∣∣∣(t−1t+1)∣∣∣)+C
I=2ln(|(t+1)|)+2ln(|(t−1)|)−ln(|(t−1)|)−ln(|(t+1)|)+C
Hence the correct is
ln∣∣∣√x2+x+1+x−1√x2+x+1+x+1∣∣∣+C