The correct option is C 12x−log(e2x+4)+12tan−1(ex2)
Let I=∫ex+2e2x+4dx=∫(exe2x+4+2e2x+4)dx
⇒I=I1+I2
Where
I1=∫exe2x+4dx
Put t=ex⇒dt=exdx
I1=∫1t2+4dt=12tan−1t2=12tan−1ex2
And I2=∫2e2x+4dx
Put u=e2x⇒du=2e2xdx
I2=∫1u(u+4)du=∫(14u−14(u+4))du
=logu4−log(u+4)4=loge2x4−log(e2x+4)4
Hence
I=loge2x4−log(e2x+4)4+12tan−1ex2
=12x−log(e2x+4)4+12tan−1ex2
Hence, option 'C' is correct.