The correct option is A I=−log|x−1|+log|x2+x+1|+2√3tan−1(2x+1√3)+C
Let f(x)=ax2+bx+c
Given, f(0)=f(1)=3f(2)=−3
∴f(0)=c=−3
f(1)=a+b+c=−3
3f(2)=3(4a+2b+c)=−3
On solving, we get a=1, b=−1, c=−3
∴f(x)=x2−x−3
⟹I=∫f(x)x3−1dx=∫x2−x−3(x−1)(x2+x+1)dx
Using partial fractions, we get
(x2−x−3)(x−1)(x2+x+1)=A(x−1)+Bx+C(x2+x+1)
⇒x2−x−3=(A+B)x2+(A−B+C)x+(A−C)
⇒A+B=1
A−B+C=−1
A−C=−3
On solving, we get A=−1, B=2, C=2
∴I=∫−1x−1dx+∫(2x+2)(x2+x+1)dx
=−log|x−1|+∫(2x+1)dxx2+x+1+∫1dxx2+x+1
Put x2+x+1=t
⇒(2x+1)dx=dt
=−log|x−1|+∫dtt+∫dx(x+12)2+(√32)2
=−log|x−1|+log|x2+x+1|+2√3tan−1(x+12√32)
=−log|x−1|+log|x2+x+1|+2√3tan−1(2x+1√3)+C