wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate ln(1+sin2x)cos2xdx

Open in App
Solution

I=(ln(1+sin2x)cos2x)dx
=(sec2x.ln(1+sin2x)dx
integrating by parts, we get
I=tanx.ln(1+sin2x)(2tanxsinxcosx1+sin2x)dxI=(tanx.(2sinxcosx1+sin2x))dxI=2((sinxcosx).(sinxcosx1+sin2x)dx)I=2((sin2x1+sin2x)dx)I=2((1(11+sin2x))dx)I=2x2((11+sin2x)dx)
(11+sin1x)dx=1cos2x1+ sin2xcos2xdx
=(sec2xsec2x+tan2x)dx
=(sec2x1+2tan2x)dx
Let tanx=12tan(θ)sec2xdx=(12)sec2(θ)d(θ)
(sec2x1+2tan2x)dx=(12)((sec2θ1+2tan2θdθ=12sec2θsec2θdθ
=(12d(θ)=θ2
θ2=tan1(2tanx)2
Hence the correct answer is :-
I=tanx.ln(1+sin2x)2x+2tan1(2tanx)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon