wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: ππ21sinx1cosxdx

Open in App
Solution

ππ21sinx1cosxdx=11cosxdxsinx1cosxdx=12sin2x2dxsinx1cosxdx=12cosec2x2sinx1cosxdx=122[cotx2]ππ2sinx1cosxdx=[cotπ2cotπ4]sinx1cosxdx=01sinx1cosxdx

Now, for
ππ2sinx1cosxdx

Let 1cosx=tsinxdx=dt
dtt=logt+c=[log(1cosx)]ππ2=log2

hence, ππ21sinx1cosxdx=01sinx1cosxdx=1log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon