The correct option is A −12ln(sinθ+cosθ+√sin2θsinθ+cosθ−√sin2θ)+c
Given, =I∫sinθ−cosθ√sin2θdθ
=∫(sinθ−cosθ)secθ√2tanθdθ
=∫tanθ−1√2tanθdθ
Let, tanθ=t2⇒sec2θdθ=2tdt⇒dθ(1+t4)=2tdt
Substituting back,
=∫(t2−1)2tdt√2.t(1+t4)
=∫t2−1(1+t4)√2dt
=∫t2−1(1+t4)√2dt
=∫1−1t2(1t2+t2)√2dt
=∫1−1t2(t+1t)2−2√2.dt
Let, t+1t=m=>(1−1t2)dt=dm
=∫√2dmm2−2
=∫√2dm(m+√2)(m−√2)
=∫(−12(m+√2)+12(m−√2))dm
=−12ln(m+√2)+12ln(m−√2)+c
=−12ln(m+√2m−√2)+c
=−12ln(t2+1+√2tt2+1−√2t)+c
=−12ln(tanθ+1+√2tanθtanθ+1−√2tanθ)+c
=−12ln(sinθ+cosθ+√sin2θsinθ+cosθ−√sin2θ)+c