Evaluate : ∫sinx+4sin3x+6sin5x+3sin7xsin2x+3sin4x+3sin6xdx
Given ∫sinx+4sin3x+6sin5x+3sin7xsin2x+3sin4x+3sin6xdx
=∫(sinx+sin3x)+3(sin3x+sin5x)+3(sin5x+sin7x)sin2x+3sin4x+3sin6xdx
∫(2sin2xcosx+6sin4xcosx+6sin6xcosx)sin2x+3sin4x+3sin6xdx [∵sinA+sinB=2sin(A+B2)cos(A−B2)]
=∫2cosx(sin2x+3sin4x+3sin6x)sin2x+3sin4x+3sin6xdx=2∫cosxdx =2sinx+c