Evaluate : ∫sinxsin4xdx
I=∫sinxsin4xdx=∫sinx2sinxcosxcos2xdx=14∫dxcosx⋅cos2x
=14∫cosx(1−sin2x)(1−2sin2x)dx
Substitute t = sinx, we get dt = cosx.dx
I=14∫dt(1−t2)(1−2t2)dt=14∫(21−2t2−11−t2)dt
=14∫dt12−t2−14∫dt1−t2
=141√2ln∣∣
∣
∣
∣∣1√2+t1√2−t∣∣
∣
∣
∣∣−18ln∣∣∣1+t1−t∣∣∣−C
=141√2ln∣∣ ∣ ∣ ∣∣1√2+sinx1√2−sinx∣∣ ∣ ∣ ∣∣−18ln∣∣∣1+sinx1−sinx∣∣∣−C